NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 4284 CUMULATIVE FATIGUE DAMAGE AT ELEVATED TEMPERATURE By William K. Rey University of Alabama Washington September 1958 • • #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC #### TECHNICAL NOTE 4284 #### CUMULATIVE FATIGUE DAMAGE AT ELEVATED TEMPERATURE By William K. Rey #### SUMMARY A study of cumulative fatigue damage at elevated temperatures was conducted using heat-treated SAE 4130 alloy steel. The S-N curves at room temperature, 400° F, and 800° F were obtained from rotating-beam fatigue tests. Two-step, three-step, and five-step cumulative-damage fatigue tests were conducted on rotating-beam fatigue specimens at room temperature, 400° F, and 800° F. The results of the cumulative-damage tests are compared with those of a theoretical analysis. #### INTRODUCTION The behavior of a material subjected to repeated applications of load is of importance in the structural design of aircraft. Consequently, investigators have compiled volumes of data on the fatigue properties of aircraft materials and the effect of numerous variables on these properties. Most of these data were obtained by repeatedly applying a constant amplitude of alternating stress to a specimen until failure occurred. By testing a number of specimens at different stress levels, an S-N curve is obtained in which stress is plotted against cycles to failure. The data obtained from conventional fatigue tests at constant stress amplitudes are of questionable value for design applications in which the maximum intensity of stress is not constant during the life of the structure. This problem is of particular interest in aircraft design since the stresses produced by air loads, gust loads, engine vibrations, and landings vary in magnitude and duration. The problem is further complicated by the fact that repeated stressing of a material at one stress amplitude may have pronounced effects on the fatigue properties at other stress amplitudes. A number of investigations have been conducted (refs. 1 to 17) to determine the effect of stressing a material at one stress amplitude on the fatigue life at a second stress amplitude. The evidence indicates that for both ferrous and aluminum alloys understressing, overstressing, and coaxing may produce considerable change in the fatigue properties 2 NACA IN 4284 of a material. There have been attempts to explain these effects as the result of cold-working, strain-aging, residual stresses, and specimen selectivity. None of these explanations appear to be adequate since they fail to account completely for all the experimental evidence. Additional investigations have been conducted (refs. 18 to 22) in which the stress amplitude was varied according to some definite, usually periodic, program during the test. The results of tests of this type are difficult to interpret for design purposes unless the test load was varied in the same manner as that in which the load will vary in the part being designed. Since there are an infinite number of possible service stress histories, the accumulation of data in this manner would appear to be an endless task. In order to obtain a rational design procedure it is necessary first to establish a hypothesis of fatigue damage. It appears reasonable to assume that a material subjected to repeated stressing undergoes some damage during each cycle of stress and that this damage accumulates to the point of failure. With such a hypothesis it is possible to relate the behavior of a material subjected to cycles of varying stress amplitude to its behavior when subjected to cycles of constant stress amplitude. It is then possible to design a member that will be subjected to varying stress amplitudes during its life by use of the conventional S-N curve and the loading spectrum for the member (refs. 20 and 23 to 25). This investigation was carried out at the University of Alabama under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics. #### SYMBOLS | D | fatigue damage | | | | | | | | | |-----|---|--|--|--|--|--|--|--|--| | E | endurance limit | | | | | | | | | | k | constant | | | | | | | | | | N | number of loading cycles to failure at stress S | | | | | | | | | | n · | number of loading cycles applied at stress S | | | | | | | | | | R | cycle ratio, $\frac{n}{N}$ | | | | | | | | | | S | stress | | | | | | | | | NACA IN 4284 3 W net work absorbed at failure or work done to failure $$\gamma = \frac{S - E}{E}$$ Subscripts: 1, 2, . . . n indicates steps or levels #### CUMULATIVE-DAMAGE STUDIES Miner (ref. 26) proposed the first usable hypothesis of fatigue damage by relating damage at each stress amplitude to the net work that may be absorbed by a material. Miner assumed that fatigue damage could be expressed as the ratio of the number of loading cycles applied at a given stress to the number of cycles required to produce failure at the given stress. This ratio is referred to as the cycle ratio. Miner further assumed that if a material was subjected to repeated loading at more than one stress amplitude failure would occur when the sum of the cycle ratios became unity. This simple concept of cumulative damage may be expressed symbolically as follows: If w net work absorbed at failure or work done to failure W₁ work absorbed at stress S₁ in n₁ cycles n₁ number of loading cycles applied at stress S₁ N_1 number of loading cycles to failure at stress S_1 R_1 cycle ratio at stress S_1 then, the first assumption may be expressed as $$\frac{W_{\underline{1}}}{W} = \frac{n_{\underline{1}}}{N_{\underline{1}}} = R_{\underline{1}}$$ and the second assumption may be expressed as $$W_1 + W_2 + W_3 + \dots W_n = W$$ or $$\frac{W_1}{W} + \frac{W_2}{W} + \frac{W_3}{W} + \dots + \frac{W_n}{W} = 1$$ from which $$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \cdots \cdot \frac{n_n}{N_n} = 1$$ or $$R_1 + R_2 + R_3 + \dots R_n = 1$$ The last equation which may be expressed as $\sum \frac{n}{N} = 1$ is frequently referred to as Miner's sum or the cumulative cycle ratio. To verify this hypothesis, Miner performed a series of 22 axial-load fatigue tests on sheet specimens and riveted specimens of 2024-T3 alclad aluminum. Individual specimens were each subjected to two, three, or four different stress amplitudes. The average value of the cumulative cycle ratio was 1.015 with a minimum of 0.61 and a maximum of 1.45. Although the average value of the cumulative cycle ratio is very nearly unity as predicted by Miner's theory, the experimental evidence is not conclusive because of the relatively small number of tests and the scatter of the data. Further investigations have shown that there are a number of additional factors not considered by Miner that influence fatigue damage. For example, it has been shown that regardless of whether a high or low stress is applied first, the number of different stress amplitudes applied and the magnitude of each stress level relative to the endurance limit are among the variables affecting fatigue damage. Brueggeman, Mayer, and Smith (ref. 27) conducted a series of axial-load tests on 93 specimens of 2024-T3 aluminum-alloy sheet containing a drilled hole. All specimens were subjected to two-step tests in which a given number of cycles were applied at one stress followed by stressing at a second stress until failure. When the initial stress was less than the second stress, the cumulative cycle ratio at failure exceeded unity. When the initial stress was greater than the second stress, the cumulative cycle ratio was less than unity. NACA IN 4284 5 Bennett (ref. 10) performed a series of tests on SAE 4130 steel using both axial load and rotating bending machines. His results with respect to the effect of the sequence in which the stresses are applied are identical to those of Brueggeman, Mayer, and Smith. Richart and Newmark (ref. 28) have proposed a hypothesis in which the effect of the sequence in which the stresses are applied is considered. If fatigue damage is denoted by the term D, curves of cycle ratio against damage may be plotted. It is assumed that the damage is zero before applying any stresses and unity when a specimen has failed because of repeated stressing. Points on the conventional S-N curve represent a cycle ratio of unity and a damage of unity. As a material is subjected to repeated stressing the cycle ratio increases and the damage increases. However, the exact relationship between cycle ratio and damage is not known. Miner assumed a linear relationship between cycle ratio and damage as shown by the line D=R in figure 1. Richart and Newmark assume that the relation between cycle ratio and damage is a function of the stress as shown by the curves $S_1,\ S_2,\ {\rm and}\ S_3$ in figure 1 in which $S_1>S_2>S_3.$ The assumption of Richart and Newmark agrees with the experimental evidence which indicates that at low stress levels a relatively small amount of damage occurs during the early cycles but increases rapidly toward the end of the endurance lift. On the other hand, at high stress levels a greater amount of damage occurs during the early cycles than during the latter stages. This assumption agrees with the conclusions of other investigators that the cumulative cycle ratio at failure is greater than unity when the initial stress is less than the final stress and less than unity when the initial stress is larger than the final stress is In order to apply the hypothesis of Richart and Newmark it is necessary to determine experimentally curves of damage plotted against cycle ratio for various stresses in addition to the conventional S-N curve. Since curves of damage plotted against cycle ratio are not readily available for most materials, it would be difficult to use this procedure in design. Grover, Bishop, and Jackson (ref. 29) conducted a number of two-step
cumulative-damage axial-load fatigue tests on sheet specimens of 2024-T3 aluminum alloy, 7075-T6 aluminum alloy, and SAE 4130 steel. For the tests in which the low stress was applied first, the cumulative cycle ratio at failure exceeded unity for all three materials. For the tests in which the high stress was applied first, the cumulative cycle ratio at failure was less than unity for the SAE 4130 steel specimens. However, the tests on the aluminum-alloy specimens in which the high stress was applied first had a cumulative cycle ratio at failure greater than unity. Marco and Starkey (ref. 30) reported a number of rotating-beam fatigue tests of 76S-T6l aluminum alloy and SAE 4340 steel in which cumulative damage was studied. The results of these tests also show the effect of the order in which the stresses are applied. During the course of each test the stress was changed 2, 4, 6, 10, 15, or 20 times. There was no well-defined effect due to the number of different stresses applied. A very extensive axial-load cumulative-fatigue-damage study of alclad 7075-T6 and alclad 2024-T3 aluminum-alloy sheet was conducted by Smith, Howard, and Smith (ref. 31). A total of 805 specimens were tested under various loading conditions with all the cumulative-damage tests being two-step tests. Seventy-two percent of the average cumulative cycle ratios were within 20 percent of unity and 40 percent were within 10 percent of unity. The smallest average cumulative cycle ratio of a group of four similar specimens was 0.568 and the largest, 1.440. There was no systematic variation of the cumulative cycle ratio with the stress amplitude, the sheet thickness, the mean stress, or the alloy used. Schijue and Jacobs (refs. 32) reported a number of cumulative-damage axial-load fatigue tests on both notched and unnotched specimens of 2024-T3 alclad. Considerable scatter in the results makes interpretation difficult. For example, in one series of 10 identical tests on notched specimens in which the high stress was applied first, the cumulative cycle ratio at failure varied from 0.19 to more than 18. Low (ref. 33) conducted a number of reversed-bending cumulative-damage tests on aluminum-alloy sheet. Instead of the conventional S-N curve, a curve of maximum fiber strain plotted against number of cycles to failure was obtained which was similar in shape to the conventional S-N curve for nonferrous materials. In the cumulative-damage tests, the value of the cumulative cycle ratio at failure varied from 0.75 to 1.49. A plot of the maximum fiber strain against the number of cycles to failure at the final strain is linear which suggests another variable that may influence the value of the cumulative cycle ratio. Henry (ref. 34) has made a theoretical analysis of fatigue-damage accumulation based on the assumption that the S-N curve may be represented by the equation $N = \frac{k}{S-E}$ where k is a constant and E is the endurance limit. An expression denoted by γ is called the overstress ratio and defined as $$\gamma = \frac{S - E}{E}$$ Henry assumes that as a material accumulates fatigue damage the values of k and E change so that after a material has accumulated a certain amount of fatigue damage it has an S-N curve different from the S-N curve of the virgin material. Using these assumptions, Henry has derived the following expression for the fatigue damage D (where R is cycle ratio): $$D = \frac{R}{1 + \frac{1 - R}{\gamma}}$$ Using this expression Henry has analyzed the experimental data of Bennett (ref. 10) and Kommers (refs. 9). There is close agreement between the experimental results and the results predicted by Henry's theory. Henry's theory may be applied to predict the cumulative cycle ratio when only the conventional S-N curves of a material are available. All the fatigue-damage tests reported in the literature were conducted at room temperature. The present investigation was undertaken to determine the fatigue-damage characteristics of a typical aircraft steel at elevated temperatures. #### MATERIAL The material used in this investigation was supplied as 225 feet of $\frac{1}{2}$ -inch-diameter round rod from one heat of SAE 4130 steel which was heat-treated to military specification S 6758, condition F5. The chemical analysis was as follows: | Carbon, percent by weight | | • | • | • | | • | • | | | | • | • | • | • | | • | 0.33 | |-------------------------------|---|---|---|---|---|---|---|---|--|---|---|---|---|---|--|---|-------| | Manganese, percent by weight | • | | | | • | | | • | | • | | • | | • | | | 0.46 | | Phosphorus, percent by weight | | | | | | | | | | | | | | | | | 0.014 | | Sulphur, percent by weight . | | | | | | | | | | | | | | | | | | | Silicon, percent by weight . | | | | | | | | | | | | | | | | | | | Nickel, percent by weight | | | | | | | | • | | | | | | | | | 0.17 | | Chromium, percent by weight . | | | | | | | | | | | | | | | | | | | Molybdenum, percent by weight | | | | | | | | | | | | | | | | | | The room-temperature mechanical properties were determined using American Society for Metals standard 5/16-inch tension specimens. These tests were performed in a Baldwin 60,000-pound universal testing machine with Huggenberger Tensometers used to measure strains. The average room-temperature mechanical properties from six tests were as follows: | Ultimate strength, psi | 133,800 | |--|------------| | Proportional limit, psi | | | Yield strength (0.2-percent offset), psi | 111,300 | | Young's modulus, psi | 30,040,000 | | Elongation in 1 inch, percent | 26 | | Reduction of area, percent | 65.7 | | Rockwell hardness | c26.3 | The average tensile stress-strain curve is shown in figure 2. #### APPARATUS AND PROCEDURE For comparison purposes, a series of cumulative fatigue tests were conducted at room temperature using a Krouse rotating bending fatigue machine operating at 4,800 rpm. The elevated-temperature tests were conducted in a Krouse high-speed, high-temperature, repeated-stress machine at a testing speed of 4,800 rpm. This machine is described in detail in reference 35. The dimensions of the specimens used for all the fatigue tests are given in figure 3. The specimens were machined from the $\frac{1}{2}$ -inch-diameter rod and then polished. The machining marks were removed with 120-grit Metalite cloth and 280-grit Metalite cloth was used for the final polish. All circumferential scratches were removed by polishing parallel to the longitudinal axis of the specimen while it was slowly rotated in a lathe. Approximately 0.002 inch of the material was removed in the polishing operation. For the elevated-temperature tests the specimens were inserted in the furnace at room temperature and rotated at zero stress while the furnace temperature was increased to the test temperature. The testing temperature was obtained in approximately 45 minutes. After reaching the test temperature an additional 15 minutes was allowed to obtain temperature equilibrium before applying the load. To obtain the S-N curve at each temperature, a series of conventional fatigue tests were performed. A minimum of four specimens were tested at each of 10 different stress levels. The cumulative-damage tests at each temperature were conducted in three parts: A series of two-step tests, a series of three-step tests, and a series of five-step tests. The two-step tests were conducted according to the following schedule: - (1) Initial stress S_1 less than final stress S_2 - (a) Cycle ratio of 0.25 at S_1 to failure at S_2 - (b) Cycle ratio of 0.50 at S₁ to failure at S₂ - (c) Cycle ratio of 0.75 at S_1 to failure at S_2 - (2) Initial stress S₁ greater than final stress S₂ - (a) Cycle ratio of 0.25 at S_1 to failure at S_2 - (b) Cycle ratio of 0.50 at S_1 to failure at S_2 - (c) Cycle ratio of 0.75 at S1 to failure at S2 A minimum of four specimens were tested in each stress sequence. The entire schedule was then repeated for a different set of stresses S_1 and S_2 . The three-step tests were conducted according to the following schedule: - (1) Stress level progressively increasing, $S_1 < S_2 < S_3$: Cycle ratio of 0.30 at S_1 followed by cycle ratio of 0.30 at S_2 to failure at S_3 - (2) Stress level progressively decreasing, $S_1 > S_2 > S_3$: Cycle ratio of 0.30 at S_1 followed by cycle ratio of 0.30 at S_2 to failure at S_3 A minimum of four specimens were tested in each sequence. The five-step tests were conducted according to the following schedule: - (1) Stress level progressively increasing, $S_1 < S_2 < S_3 < S_4 < S_5$ - (2) Stress level progressively decreasing, $S_1 > S_2 > S_3 > S_4 > S_5$ - (3) Stress level alternating, $S_1 < S_2$, $S_2 > S_3$, $S_3 < S_4$, $S_4 > S_5$ A cycle ratio of 0.20 was applied at each of the first four stress levels followed by stressing until failure at the final stress level. A minimum of four specimens were tested in each sequence. #### RESULTS AND DISCUSSION #### Room Temperature The data used to obtain the S-N curve at room temperature are summarized in table I. The mean S-N curve shown in figure 4 was obtained by the method of reference 36, as illustrated in appendix A. The reasonable range (ref. 36) of the mean S-N curve is ± 300 psi. For a single specimen, the average value of cycle ratio $\frac{n}{N}$ was 1.035 with a minimum value of 0.780 and a maximum value of 1.343. Seventy-five percent of the specimens had a value of $\frac{n}{N}$ within 15 percent of unity and 61 percent of the specimens had a value of $\frac{n}{N}$ within 10 percent of unity. The results of the two-step tests at room temperature are summarized in table II. For 24 specimens to which the low stress was applied first, the average value of the cumulative cycle ratio at failure was 1.169. For 24 specimens to which the high stress was applied first, the average value of the cumulative cycle ratio was 0.809. The results of the three-step tests at
room temperature are given in table III. For the specimens for which the stress level was progressively increased during the test, the average value of the cumulative cycle ratio was 1.644. For the specimens for which the stress level was progressively decreased during the test, the average value of the cumulative cycle ratio was 0.787. The results of the five-step tests at room temperature are summarized in table IV. When the stress level was progressively increased the average value of the cumulative cycle ratio was 1.107. When the stress level was progressively decreased the average value of the cumulative cycle ratio was 0.875. For specimens for which the stress level was alternately increased and decreased, the average cumulative cycle ratio was 0.846. As other investigations have shown, the data given in tables II, III, and IV indicate that at room temperature the order in which the stresses are applied affects the cumulative cycle ratio. In general, when a low stress is applied first, the damage at the low stress is less than that predicted by Miner and when a high stress is applied first the damage is greater than that predicted. Henry (ref. 34) considered the effect of the order in which the stresses are applied in developing his theory. For each of the cumulative-damage tests, the theoretical cumulative cycle ratio has been computed using Henry's theory and compared with the experimental results in table V. A sample computation using Henry's theory is given in appendix B. In general, the test results at room temperature show close agreement with the values predicted by Henry. ## Temperature, 400° F The test results used to obtain the mean S-N curve at 400° F are presented in tabular form in table VI and shown graphically in figure 5. The reasonable range of the mean curve is ± 730 psi. For a single specimen, the average value of $\frac{n}{N}$ was 1.016 with a minimum value of 0.465 and a maximum value of 1.595. Fifty-one percent of the specimens had a value of $\frac{n}{N}$ within 15 percent of unity and 41 percent of the specimens had a value of $\frac{n}{N}$ within 10 percent of unity. The scatter is somewhat larger than that found in the room-temperature tests. This greater scatter may be attributed to the introduction of the temperature variable. The results of the two-step tests at 400°F are presented in tables VII and VIII. In table VII the cycle ratio was computed using the mean S-N curve whereas in table VIII the computations were based on the minimum S-N curve. The computations based on the minimum S-N curve are presented to show that, in the cumulative-damage tests, the range of values obtained for the cumulative cycle ratio cannot be explained solely on the basis of scatter. Table VIII shows that the cumulative cycle ratio is less than unity when the high stress is applied first even when the computations are based on the minimum fatigue life. Table VIII also shows that if the computations are based on the minimum S-N curve the effect of the order in which the stresses are applied is the same at elevated temperature as it is at room temperature. For specimens to which the low stress was applied first the average value of the cumulative cycle ratio was 1.283. For specimens to which the high stress was applied first the average value of the cumulative cycle ratio was 0.848. Tables IX and X present the results of three-step tests at 400° F. Based on the minimum S-N curve, the average value of the cumulative cycle ratio was 1.862 for specimens subjected to progressively increasing stresses and 0.865 for specimens subjected to progressively decreasing stresses. The results of the five-step tests at 400° F are given in tables XI and XII. Based on the minimum curve, the average value of the cumulative cycle ratio was 2.456 for specimens subjected to progressively increasing stresses and 1.128 for specimens on which the stress level was alternately increased and decreased. In table XIII the experimental results are compared with the results predicted by Henry's theory. All the computations in this table are based on the minimum fatigue life. Although the agreement is not so close as that at room temperature, Henry's theory appears to predict satisfactorily the effect of stress sequence on the cumulative cycle ratio. ### Temperature, 800° F The test results used to obtain the mean S-N curve at 800° F are presented in tabular form in table XIV and shown graphically in figure 6. The reasonable range of the mean curve is ± 410 psi. For a single specimen, the average value of $\frac{n}{N}$ was 1.161 with a minimum value of 0.345 and a maximum value of 2.567. Although this represents greater scatter than the room-temperature tests or the tests at 400° F, the reasonable range of the mean curve is less because of the larger number of specimens tested. Only 20 percent had a value of $\frac{n}{N}$ within 20 percent of unity and 15 percent of the specimens had a value of $\frac{n}{N}$ within 10 percent of unity. The results of the two-step tests at 800° F are presented in table XV. For 27 specimens to which the low stress was applied first, the average value of the cumulative cycle ratio at failure was 1.302. For 26 specimens to which the high stress was applied first, the average value of the cumulative cycle ratio at failure was 0.594. The effect of the order in which the stresses were applied is the same as that noted at room temperature and at 400° F. Table XVI presents the results of the three-step tests at 800°F. For the specimens on which the stress level was progressively increased during the test, the average value of the cumulative cycle ratio at failure was 0.584. For specimens on which the stress level was progressively decreased during the test, the average value of the cumulative cycle ratio at failure was 0.450. These data again indicate the effect of the order of application of stress on the cumulative cycle ratio at NACA TN 4284 13 failure. However, in the progressively increasing stress tests, the cumulative cycle ratio was not greater than unity. In table XVII, the results of the five-step tests at 800° F are given. The average value of the cumulative cycle ratio at failure was 0.884 for specimens subjected to progressively increasing stresses, 0.459 for specimens subjected to progressively decreasing stresses, and 0.379 for specimens on which the stress level was alternately increased and decreased. As in the three-step tests, the cumulative cycle ratio at failure was less than unity regardless of the order in which the stresses were applied. The comparison of the experimental results at 800° F with those obtained by Henry's theory is given in table XVIII. Although Henry's theory appears to predict the proper trend, the agreement is not close in the progressively increasing three-step and five-step tests. #### CONCLUDING REMARKS A study of cumulative fatigue damage at elevated temperatures using heat-treated SAE \$\frac{1}{4}\$30 alloy steel has been made. In using fatigue data, it is important to recognize that the fatigue curve represents only average values. An individual specimen may exhibit a fatigue life considerably different from the average. The data obtained indicate that fatigue testing at elevated temperatures may be expected to result in even greater scatter than that which appears at room temperature. When this already large scatter is coupled with further inaccuracies introduced by testing at more than one stress level, the scatter may become large enough to overshadow the effects of the variables being studied. However, the results indicate that the frequently accepted assumption that damage is proportional to cycle ratio errs on the unsafe side under certain conditions. These results cannot be explained solely on the basis of scatter. Since Henry (Transactions of A.S.M.E., August 1955) assumed an equation for the S-N curve that does not fit the elevated-temperature data, closer agreement may be obtained by the use of a different equation in the analysis. The analysis developed by Henry satisfactorily predicts the cumulative cycle ratio at failure in room-temperature tests. At elevated temperatures, further study is indicated to arrive at a satisfactory analysis. University of Alabama, University, Ala., March 25, 1957. #### APPENDIX A #### METHOD FOR OBTAINING MEAN S-N CURVE In order to obtain the mean life at each stress amplitude, the mean S-N curve was determined by the method proposed in reference 36. This method assumes that fatigue data follow a normal distribution on the stress scale which has been shown to be reasonably correct (ref. 37). The mean S-N curve is established by a statistical technique through trial and error. To illustrate this method, a portion of the room-temperature data has been replotted in figure 7. Groups of points are selected so that each group contains at least 5 test points within a 10 to 1 life scatter. The data plotted in figure 7 have been divided into two groups denoted A and B. After selecting the groups, the center of each group is determined by inspection and the vertical lines TT' drawn through the center. The center of each group represents the approximate mean-log-life of the group. The mean stress of each group at the mean life is then determined. For each plotted point, the vertical displacement from the estimated curve is measured and expressed in terms of stress. In figure 7, the vertical displacement of one of the points in group A is shown as $\Delta S = 1,500$ psi. This displacement is considered positive when the point lies above the curve. The algebraic sum and the mean of these vertical displacements are then computed for each group. For group A, the algebraic sum is given by $$\sum (\Delta S) = 700 + 500 - 500 - 1,100 + 1,500 + 1,100 + 0 - 450 = 1,750 \text{ psi}$$ and the mean stress is $$\frac{1,750}{8}$$ = 219 psi. The mean is then measured off
on line TT' from points z to w. Point w lies above the curve when the mean is positive and below the curve when the mean is negative. The mean of each group is computed and a new curve, shown in figure 7 as the corrected curve, is drawn through the points labeled w in each group. In reference 36 it is recommended that the entire procedure be repeated until the stresses of any curve are within 2 percent of the stress of the preceding curve. The final curve obtained is the mean curve. The reasonable range is defined as $$\pm \frac{2C}{\sqrt{N}} \sigma$$ where N number of specimens $$C = \sqrt{\frac{N}{2}} \times \frac{\left(\frac{N-3}{2}\right)}{\left(\frac{N-2}{2}\right)}$$ o uncorrected standard deviation, $\sqrt{\sum_{i=1}^{N} \frac{(x_i - \overline{x})^2}{N}}$ $X_i - \overline{X}$ vertical displacement of any point from corrected mean curve For the room-temperature data, the standard deviation of the 41 specimens was 945 psi and the reasonable range ± 302 psi. This indicates that the probable position of the real mean curve is within ± 302 psi of the position shown in figure 4. #### APPENDIX B #### EXAMPLE OF COMPUTATION OF CUMULATIVE CYCLE RATIO To illustrate the method of analysis proposed by Henry, the computation of the theoretical cumulative cycle ratio is carried out in detail for one specimen at room temperature. Assume that a specimen is to be subjected to a cycle ratio R_1 of 0.250 at a stress S_1 of 80,000 psi followed by stressing at S_2 of 88,000 psi until failure. From figure 4 the endurance limit E at room temperature is 77,000 psi. The overstress ratio at S_1 is given by $$\gamma_1 = \frac{S_1 - E}{E} = \frac{80,000 - 77,000}{77,000} = 0.039$$ The overstress ratio at S_2 is $$\gamma_2 = \frac{S_2 - E}{E} = \frac{88,000 - 77,000}{77,000} = 0.143$$ The damage due to imposing a cycle ratio of 0.250 at S_1 is $$D_1 = \frac{R_1}{1 + \frac{1 - R_1}{\gamma_1}} = \frac{0.250}{1 + \frac{0.750}{0.039}} = 0.012$$ The damage due to stressing at S_1 represents a cycle ratio at S_2 equal to $$R_2 = \frac{D_1(1 + \gamma_2)}{D_1 + \gamma_2} = \frac{0.012(1.143)}{0.012 + 0.143} = 0.090$$ The life remaining at S_2 is $(1-R_2)$ or 0.910. The cumulative cycle ratio is the result of a cycle ratio of 0.250 at S_1 plus a cycle ratio of 0.910 at S_2 . Therefore, $$\sum_{n=0.250}^{\infty} \frac{n}{N} = 0.250 + 0.910 = 1.160$$ As shown in table II, the average experimental value obtained for this condition was 1.13^{14} . #### REFERENCES - 1. Kommers, J. B.: The Effect of Under-Stressing on Cast Iron and Open-Hearth Iron. Proc. A.S.T.M., vol. 30, pt. II, 1930, pp. 368-383. - 2. French, H. J.: Fatigue and Hardening of Steels. Trans. Am. Soc. Steel Treating, vol. 21, no. 10, Oct. 1933, pp. 899-946. - 3. Brophy, G. R.: Damping Capacity, A Factor in Fatigue. Trans. A.S.M. vol. 24, 1936, pp. 154-185. - 4. Moore, H. F.: How and When Does a Fatigue Crack Start? Metals and Alloys, vol. 7, Nov. 1936, pp. 297-299. - 5. Russell, H. W., and Welcker, W. A., Jr.: Damage and Overstress in the Fatigue of Ferrous Metals. Proc. A.S.T.M., vol. 36, pt. II, 1936, pp. 118-138. - 6. Kommers, J. B.: The Effect of Overstressing and Understressing in Fatigue. Proc. A.S.T.M., vol. 38, pt. II, 1938, pp. 249-262. - 7. Stickley, G. W.: Effect of Alternately High and Low Repeated Stresses Upon the Fatigue Strength of 25ST Aluminum Alloy. NACA TN 792, 1941. - 8. Stickley, G. W.: Improvement of Fatigue Life of an Aluminum Alloy by Overstressing. NACA TN 857, 1942. - 9. Kommers, J. B.: The Effect of Overstressing and Understressing in Fatigue. Proc. A.S.T.M., vol. 43, 1943, pp. 749-762. - 10. Bennett, J. A.: Effect of Fatigue-Stressing Short of Failure on Some Typical Aircraft Metals. NACA TN 992, 1945. - 11. Kommers, J. B.: The Effect of Overstressing in Fatigue on the Endurance Life of Steel. Proc. A.S.T.M., vol. 45, 1945, pp. 532-541. - 12. Bennett, J. A.: A Study of the Damaging Effect of Fatigue Stressing on X4130 Steel. Proc. A.S.T.M., vol. 46, 1946, pp. 693-711. - 13. Bennett, John A., and Baker, James L.: Effects of Prior Static and Dynamic Stresses on the Fatigue Strength of Aluminum Alloys. Res. Paper 2157, Nat. Bur. Standards, Jour. Res., vol. 45, no. 6, Dec. 1950, pp. 449-457. 14. Dolan, Thomas J., and Brown, Herbert F.: Effect of Prior Repeated Stressing on the Fatigue Life of 75S-T Aluminum. Proc. A.S.T.M., vol. 52, 1952, pp. 733-740. - 15. Sinclair, G. M.: An Investigation of the Coaxing Effect in Fatigue of Metals. Proc. A.S.T.M., vol. 52, 1952, pp. 743-758. - 16. Epremian, E., and Mehl, R. F.: Investigation of Statistical Nature of Fatigue Properties. NACA TN 2719, 1952. - 17. Dieter, G. E., Horne, G. T., and Mehl, R. F.: Statistical Study of Overstressing in Steel. NACA TN 3211, 1954. - 18. Langer, B. F.: Fatigue Failure From Stress Cycles of Varying Amplitude. Jour. Appl. Mech., vol. 4, no. 4, Dec. 1937, pp. A-160 A-162. - 19. Dolan, T. J., Richart, F. E., Jr., and Work, C. E.: The Influence of Fluctuations in Stress Amplitude on the Fatigue of Metals. Proc. A.S.T.M., vol. 49, 1949, pp. 664-682. - 20. Dryden, H. L., Rhode, R. V., and Kuhn, P.: The Fatigue Problem in Airplane Structures. Fatigue and Fracture of Metals A Symposium held at M.I.T., June 19-22, 1950, William M. Murray, ed., Tech. Press of M.I.T. and John Wiley & Sons, Inc., c.1952, pp. 18-51. - 21. Hardrath, Herbert F., and Utley, Elmer D., Jr.: An Experimental Investigation of the Behavior of 24S-T4 Aluminum Alloy Subjected to Repeated Stresses of Constant and Varying Amplitudes. NACA TN 2798, 1952. - 22. Freudenthal, Alfred M.: A Random Fatigue Testing Procedure and Machine. Proc. A.S.T.M., vol. 53, 1953, pp. 896-910. - 23. Meyer, John H.: Test Development of Structures Designed Understrength. Aero. Eng. Rev., vol. 13, no. 10, Oct. 1954, pp. 54-64. - 24. Miles, John W.: On Structural Fatigue Under Random Loading. Jour. Aero. Sci., vol. 21, no. 11, Nov. 1954, pp. 753-762. - 25. Grover, H. J., Gordon, S. A., and Jackson, L. R.: Fatigue of Metals and Structures. NAVAER 00-25-534, Bur. Aero., 1954, pp. 182-187. - 26. Miner, Milton A.: Cumulative Damage in Fatigue. Jour. Appl. Mech., vol. 12, no. 3, Sept. 1945, pp. A-159 A-164. 27. Brueggeman, W. C., Mayer, M., Jr., and Smith, W. H.: Axial Fatigue Tests at Two Stress Amplitudes of 0.032-Inch 24S-T Sheet Specimens With a Circular Hole. NACA TN 983, 1945. - 28. Richart, F. E., Jr., and Newmark, N. M.: An Hypothesis for the Determination of Cumulative Damage in Fatigue. Proc. A.S.T.M., vol. 48, 1948, pp. 767-800. - 29. Grover, H. J., Bishop, S. M., and Jackson, L. R.: Fatigue Strengths of Aircraft Materials. Axial-Load Fatigue Tests on Unnotched Sheet Specimens of 245-T3 and 755-T6 Aluminum Alloys and of SAE 4130 Steel. NACA TN 2324, 1951. - 30. Marco, S. M., and Starkey, W. L.: A Concept of Fatigue Damage. Trans. A.S.M.E., vol. 76, no. 4, May 1954, pp. 627-632. - 31. Smith, Ira, Howard, Darnley M., and Smith, Frank C.: Cumulative Fatigue Damage of Axially Loaded Alclad 75S-T6 and Alclad 24S-T3 Aluminum Alloy Sheet. NACA TN 3293, 1955. - 32. Schijue, J., and Jacobs, F. A.: Fatigue Tests on Notched and Unnotched Clad 24S-T Sheet Specimens To Verify the Cumulative Damage Hypothesis. Rep. M.1982, Nationaal Luchtvaartlaboratorium, Amsterdam, Apr. 1955. - 33. Low, A. C.: The Bending Fatigue Strength of Aluminum Alloy MG5 Between 10 and 10 million Cycles. Jour. R.A.S., vol. 59, no. 535, July 1955, pp. 502-506. - 34. Henry, D. L.: A Theory of Fatigue-Damage Accumulation in Steel. Trans. A.S.M.E., vol. 77, no. 6, Aug. 1955, pp. 913-918. - 35. Rey, William K.: Elevated-Temperature Fatigue Properties of Two Titanium Alloys. NACA RM 56B07, 1956. - 36. Anon.: Proposed Method and Form of Presentation, Laboratory Fatigue Test Data. Rep. No. A.R.T.C.-W76, Douglas Aircraft Co. Inc., Nov. 1955. - 37. Bender, Arthur, and Hamm, Arnett: The Application of Probability Paper to Life or Fatigue Testing. Eng. Dept. Paper, Delco-Remy Div., Gen. Motors Corp. (Anderson, Ind.). TABLE I.- RESULTS OF ROOM-TEMPERATURE TESTS AT ONE STRESS LEVEL [N obtained from mean S-N curve] | Specimen
number | Stress,
psi | Cycles to
failure,
n | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation
from
average,
percent | |--|--------------------------------------|--|--|---|---| | 12F75
12F76
12F80
12F7 ⁴ | 98,000
98,000
98,000
98,000 | 28,700
30,700
34,200
34,600 | 33,500
33,500
33,500
33,500 | 0.857
.916
1.021
1.033
Av957 | 10.4
4.3
6.7
<u>7.9</u>
Av. ±7.3 | | 12F63
12F67
12F64
12F65 | 94,000
94,000
94,000
94,000 | 50,000
53,300
60,300
64,300 | 53,500
53,500
53,500
53,500 | .935
.996
1.127
1.202
Av. 1.065 | 12.2
6.5
5.8
<u>12.9</u>
Av. ±9.4 | | 12F61
12F62
12F59
12F60 | 90,000
90,000
90,000
90,000 | 67,100
73,400
75,000
80,200 | 86,000
86,000
86,000
86,000 | .780
.853
.872
<u>.933</u>
Av860 | 9.3
.8
1.4
8.4
Av. ±5.0 | | 1 <i>2</i> F72
1 <i>2</i> F79
12F71
12F78 | 88,000
88,000
88,000
88,000 | 105,300
110,200
132,200
142,200 | 110,000
110,000
110,000
110,000 | .957
1.002
1.202
1.293
Av. 1.114 | 14.1
10.1
7.8
<u>16.5</u>
Av. ±12.1 | | 12F2
12F4
12F5
12F3 | 85,000
85,000
85,000
85,000 | 138,000
164,500
173,000
193,600 | 158,000
158,000
158,000
158,000 | .873
1.041
1.095
<u>1.225</u>
Av. 1.059 | 17.6
1.7
3.3
<u>15.7</u>
Av. ±9.6 | | 12F9
12F11
12F6
12F10 | 84,000
84,000
84,000
84,000 | 170,100
173,800
175,800
186,200 | 173,000
173,000
173,000
173,000 |
983
1.005
1.016
<u>1.076</u>
Av. 1.020 | 3.6
1.5
.4
<u>5.5</u>
Av. ±2.8 | TABLE I.- RESULTS OF ROOM-TEMPERATURE TESTS AT ONE STRESS LEVEL - Concluded | Specimen
number | Stress,
psi | Cycles to
failure,
n | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation
from
average,
percent | |---|--|---|--|---|---| | 12F12
12F13
12F15
12F14 | 82,000
82,000
82,000
82,000 | 225,000
244,000
244,800
245,500 | 224,000
224,000
224,000
224,000 | 1.004
1.091
1.093
1.096
Av. 1.071 | 6.3
1.9
2.1
<u>2.3</u>
Av. ±3.2 | | 12F17
12F19
12F18
12F16 | 80,000
80,000
80,000
80,000 | 228,000
270,500
276,400
339,200 | 282,000
282,000
282,000
282,000 | .809
.959
.980
<u>1.203</u>
Av988 | 18.1
3.0
.8
<u>21.8</u>
Av. ±10.9 | | 12F23
12F25
12F21
12F22 | 78,000
78,000
78,000
78,000 | 396,300
444,300
549,600
550,600 | 410,000
410,000
410,000
410,000 | .967
1.084
1.340
<u>1.343</u>
Av. 1.184 | 18.3
8.5
13.2
<u>13.4</u>
Av. ±13.4 | | 12F28
12F30
12F29
12F81
12F27 | 77,000
77,000
77,000
77,000
77,000 | 495,900
537,100
1,001,000
11,793,700
12,404,800 | (a)
(a)
(a)
(a b)
(a b) | | | ^aStress corresponds to endurance limit. ^bSpecimen did not fail. TABLE II. - RESULTS OF TWO-STEP TESTS AT ROOM TEMPERATURE [From mean curve: N at 80,000 psi is 282,000 cycles, N at 82,000 psi is $22^4,000$ cycles, N at 88,000 psi is 110,000 cycles, and N at $9^4,000$ psi is 53,500 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , | R ₂ ,
n ₂
N ₂ | Cumulative cycle ratio, $\frac{\underline{n}}{N}$ | Deviation
from
average,
percent | |--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--|--|---| | 12F90
12F119
12F120
12F122 | 80,000
80,000
80,000
80,000 | 88,000
88,000
88,000
88,000 | 0.250
.250
.250
.250 | 0.935
.833
.7 ¹ 9
1.018 | 1.185
1.083
.999
1.268
Av. 1.134 | 4.5
5.5
12.0
11.8
Av. ±8.5 | | 12F123
12F124
12F125
12F131 | 80,000
80,000
80,000
80,000 | 88,000
88,000
88,000
88,000 | .500
.500
.500
.500 | .934
.935
.997
1.061 | 1.434
1.435
1.497
<u>1.561</u>
Av. 1.481 | 3.2
3.1
1.1
<u>5.4</u>
Av. ±3.2 | | 12F127
12F128
12F132
12F133 | 80,000
80,000
80,000
80,000 | 88,000
88,000
88,000
88,000 | .750
.750
.750
.750 | •794
•792
•364
•547 | 1.544
1.542
1.114
<u>1.297</u>
Av. 1.374 | 12.4
12.2
18.9
<u>5.6</u>
Av. ±12.3 | | 12F134
12F135
12F136
12F138 | 88,000
88,000
88,000
88,000 | 80,000
80,000
80,000
80,000 | .250
.250
.250
.250 | •545
•567
•369
•488 | •795
•817
•619
•738
Av• •7 ⁴⁰ | 7.4
10.4
16.4
-3
Av. ±8.6 | | 12F139
12F140
12F174
12F175 | 88,000
88,000
88,000
88,000 | 80,000
80,000
80,000
80,000 | •500
•500
•500
•500 | .136
.347
.382
.457 | .631
.847
.882
<u>.957</u>
Av829 | 23.9
2.2
6.4
<u>15.4</u>
Av. ±12.0 | | 12F143
12F144
12F145
12F146 | 88,000
88,000
88,000
88,000 | 80,000
80,000
80,000
80,000 | •750
•750
•750
•750 | .325
.713
.266
.123 | 1.075
1.463
1.016
<u>.873</u>
Av. 1.107 | 2.9
32.2
8.2
<u>21.1</u>
Av. ±16.1 | TABLE II.- RESULTS OF TWO-STEP TESTS AT ROOM TEMPERATURE - Concluded | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , | R ₂ ,
n ₂
N ₂ | Cumulative cycle ratio, $\frac{n}{N}$ | Deviation
from
average,
percent | |--|--------------------------------------|--------------------------------------|-------------------------------|--|--|--| | 12F178
12F179
12F180
12F181 | 82,000
82,000
82,000
82,000 | 94,000
94,000
94,000
94,000 | 0.250
.250
.250
.250 | 0.587
.630
.594
.948 | 0.837
.880
.844
<u>1.198</u>
Av940 | 11.0
6.4
10.2
27.4
Av. ±13.8 | | 12F182
12F183
12F184
12F185 | 82,000
82,000
82,000
82,000 | 94,000
94,000
94,000
94,000 | .500
.500
.500 | .540
.867
.424
.292 | 1.040
1.267
.924
<u>.792</u>
Av. 1.006 | 3.4
25.9
6.2
21.3
Av. ±14.2 | | 12F187
12F188
12F189
12F230 | 82,000
82,000
82,000
82,000 | 94,000
94,000
94,000
94,000 | .750
.750
.750
.750 | .426
.368
.204
.320 | | 8.9
3.5
11.8
.9
Av. ±6.3 | | 12F190
12F191
12F192
12F193 | 94,000
94,000
94,000
94,000 | 82,000
82,000
82,000
82,000 | .250
.250
.250
.250 | .254
.291
.633
.431 | .504
.541
.883
.681
Av652 | 22.7
17.0
35.4
4.4
Av. ±19.9 | | 12F19 ⁴
12F195
12F196
12F197 | 94,000
94,000
94,000
94,000 | 82,000
82,000
82,000
82,000 | .500
.500
.500
.500 | .039
.138
.252
.192 | .638 | 17.7
2.6
14.8
<u>5.6</u>
Av. ±10.2 | | 12F198
12F199
12F201
12F231 | 94,000
94,000
94,000
94,000 | 82,000
82,000
82,000
82,000 | .750
.750
.750
.750 | .162
.034
.010
.275 | .784 | 4.8
10.0
12.6
17.8
Av. ±11.3 | TABLE III.- RESULTS OF THREE-STEP TESTS AT ROOM TEMPERATURE [From mean curve: N at 82,000 psi is 224,000 cycles, N at 88,000 psi is 110,000 cycles, and N at 94,000 psi is 53,500 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | S ₃ ,
psi | R ₁ , | R ₂ ,
n ₂
N ₂ | R ₃ , n ₃ | Cumulative cycle ratio, $\frac{n}{N}$ | Deviation
from
average,
percent | |--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|------------------------------|--|---------------------------------|---------------------------------------|--| | 12F232
12F233
12F235
12F236 | 82,000 | 88,000
88,000 | 94,000
94,000
94,000
94,000 | | 0.300
.300
.300
.300 | 1.125
1.052
.746
1.254 | 1.346 | 4.9
.5
18.1
12.8
Av. ±9.1 | | 12F237
12F238
12F240
12F241 | 94,000
94,000 | 88,000
88,000
88,000
88,000 | 82,000
82,000 | .300
.300
.300
.300 | .300
.300
.300
.300 | .175
.169
.218
.186 | .818 | 1.5
2.3
3.9
.1
Av. ±2.0 | TABLE IV. - RESULTS OF FIVE-STEP TESTS AT ROOM TEMPERATURE at× [From mean curve: N at 80,000 psi is 282,000 cycles, N at 82,000 psi is 224,000 cycles, 85,000 psi is 158,000 cycles, N at 88,000 psi is 110,000 cycles, N at 94,000 psi is 55,500 cycles] | Deviation
from
average,
percent | 6.8
22.2
15.1
19.3
18.9
Av.±16.5 | 15.8
3.7
12.3
14.4
15.7
Av.±12.0 | 8.4
13.9
7.9
Av. ±8.2 | |---|--|---|---| | Cumulative cycle ratio, $\sum_{\overline{N}} \frac{n}{N}$ | 1.032
1.353
.940
.893
.1.316
Av. 1.107 | .996
.907
.983
.749
.728 | .917
.728
.913
.825 | | R ₅ , N ₅ | 0.232
.553
.140
.093 | .196
.107
.183
.0 | .117 | | R _{th} , | 0.200
.200
.200
.200 | . 200
. 200
. 149
. 1,38 | . 200
. 200
. 200 | | R ₃ , | 0.200
.200
.200 | 8 8 8 8 | 200 000 000 000 000 000 000 000 000 000 | | R2,
n2
N2 | 0.20
.200
.200
.200 | 88888 | 200 | | R ₁ , | 0.200
.200
.200
.200 | 88888 | 8888 | | S ₅ ,
psi | 94,000
94,000
94,000
94,000
94,000 | 82,000
82,000
82,000
82,000
82,000 | 80,000
80,000
80,000
80,000 | | $s_{\mu^{\prime}}$ psi | 91,000
91,000
91,000
91,000
91,000 | 88888
86,888
86,888
86,888 | 88,000
88,000
88,000 | | S ₅ ,
pai | 88,000
88,000
88,000
88,000
88,000 | 888888
89999
89999 | 86,000
86,000
86,000 | | S ₂ ,
psi | 00000 |)1,000
)1,000
)1,000
)1,000 | 88,000
88,000
88,000
88,000 | | Sl,
psi | 82,000 85,00
82,000 85,00
82,000 85,00
82,000 85,00
82,000 85,00 | 4444 | 88,988
86,989
86,989 | | Specimen | 12F242
12F244
12F244
12F245
12F245 | 12F247
12F248
12F249
12F250
12F251 | 12F252
12F254
12F255
12F256 | TABLE V. - COMPARISON OF ROOM-TEMPERATURE TEST RESULTS WITH RESULTS COMPUTED BY HENRY'S THEORY (REF. 54) | stive
ratio | Henry's
theory | | 1.160
1.271
1.279
718 | 25.53
25.53 | 1.150 | 1.247
.750 | .851 | | 1.218 | | 1.207
.841
.928 | | | |--------------------------|-------------------|----------------|--------------------------------------|---|------------------|------------------|------------------|------------------|------------------|--------------|----------------------------|--
-----------------------| | Cumulative
cycle rati | Test
average | | . : | | 1.134 | 1.107 | 900.1 | 1.080 | .655
.870 | | 1.644
.787 | | 1.107
.875
.846 | | π̈́π | N_{4} | | | | | | | | | | 0.200 | | | | r 2 | N_{3} | | | | | | | | | | 0.200 | | | | п | $^{ m N}_{ m 2}$ | ts | | | | | | sts | 0.300 | tests | 0.200 | | | | Lu | ΓN | Two-step tests | 0.250
500.
750
250 | 00.7. | |
55. | .700 | Three-step tests | 0.300 | Five-step te | 0.200 | | | | , B | psi | Two- | | | | | | Three | | Five | 94,000
82,000
80,000 | | | | , ts | ຼາຍຳ | | | | | | | | | | 91,000
85,000
88,000 | | | | 83, | psi | | | | | | | | 94,000
82,000 | | 88,000
88,000
80,000 | | | | 8,2, | psi | | 88,000
88,000
88,000
80,000 | 88 | 94,000 | 94,000 | 82,000
82,000 | | 88,000 | | 85,000
91,000
88,000 | | | | 8,1, | psi | | 86,000
88,000
88,000 | 88
86
86
86
86
86
86
86
86
86
86
86
86
8 | 82,000
82,000 | 82,000
94,000 | 94,000 | | 82,000
94,000 | | 82,000
94,000
80,000 | | | TABLE VI.- RESULTS OF 400° F TESTS AT ONE STRESS LEVEL [N obtained from mean S-N curve] Cycle Deviation Mean Cycles to Specimen Stress, ratio, from life, failure, psi n average, number N n \overline{N} percent 12F114 84,000 49,000 55,500 7.5 1.133 84,000 1.4 12F102 52,400 49,000 1.069 12F115 84,000 50,000 49,000 1.020 3.3 48,700 12F103 84,000 49,000 .994 Av. ±4.5 Av. 1.054 12F98 000,08 80,000 10.6 82,500 1.031 80,000 12F99 80,000 77,200 .965 3.5 80,000 72,200 66,400 80,000 .903 3.1 12F116 12F100 80,000 80,000 .830 11.0 .932 Av. ±7.1 Av. 116,000 14.2 78,000 102,000 1.137 12F95 78,000 8.8 110,500 102,000 1.083 12F97 12F96 94,500 .926 7.0 78,000 102,000 .835 12F94 78,000 85,200 102,000 16.1 •995 Av. ±11.5 Av. 76,000 12F111 159,000 133,000 1.195 19.7 146,500 76,000 133,000 1.102 10.4 12F110 76,000 139,100 133,000 1.046 4.8 12F113 .830 16.8 76,000 400,400 12F117 133,000 .815 108,400 18.2 76,000 133,000 12F112 ·998 Av.±14.0 Av. 28.4 324,400 1.474 12F92 72,000 220,000 321,200 1.460 12F93 72,000 220,000 27.1 234,600 7.2 12F118 72,000 220,000 1.066 130,400 .592 48.4 12F58 72,000 220,000 Av. 1.148 Av. ±27.8 388,400 70,000 280,000 1.387 32.2 12F39 280,000 1.185 12F38 70,000 331,900 13.0 273,100 280,000 12F43 70,000 .975 7.1 12F42 70,000 253,500 280,000 .905 13.7 12F41 24<u>.5</u> 70,000 221,800 280,000 .792 Av. 1.049 Av. ±18.1 TABLE VI.- RESULTS OF 400° F TESTS AT ONE STRESS LEVEL - Concluded | Specimen
number | Stress,
psi | Cycles to failure, | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation
from
average,
percent | |--|--------------------------------------|---|---|---|---| | 12F109
12F48
12F49
12F108 | 68,000
68,000
68,000
68,000 | 502,900
403,200
343,800
323,400 | 356,000
356,000
356,000
356,000 | 1.413
1.133
.966
<u>.908</u>
Av. 1.105 | 27.9
2.5
12.6
<u>17.8</u>
Av.±15.2 | | 12F55
12F54
12F56
12F149 | 66,000
66,000
66,000
66,000 | 691,800
558,500
422,900
271,500 | 460,000
460,000
460,000
460,000 | 1.504
1.214
.919
<u>.590</u>
Av. 1.057 | 42.2
14.9
13.1
<u>44.2</u>
Av. ±28.6 | | 12F157
12F156
12F150
12F155
12F152 | 64,000
64,000
64,000
64,000 | 940,900
544,600
326,200
293,800
274,500 | 590,000
590,000
590,000
594,000
590,000 | 1.595
.923
.553
.498
<u>.465</u>
Av807 | 97.6
14.4
31.5
38.6
<u>42.4</u>
Av.±44.9 | | 12F160
12F161
12F158
12F159 | 62,000
62,000
62,000
62,000 | 10,106,800
8,117,200
3,949,000
376,300 | (a b)
(b)
(b)
(b) | | | | 12F162
12F163 | 60,000
60,000 | 11,572,400
16,837,700 | (a c)
(a c) | | | ^aSpecimen did not fail. ^bStress corresponds to endurance limit. ^cStress below endurance limit. TABLE VII.- RESULTS OF TWO-STEP TESTS AT 400° F BASED ON MEAN S-N CURVE [From mean curve: N at 68,000 psi is 356,000 cycles, N at 70,000 psi is 280,000 cycles, N at 78,000 psi is 102,000 cycles, and N at 80,000 psi is 80,000 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , | R ₂ , n ₂ N ₂ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | |--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--|---|--| | 12F164
12F165
12F166
12F168 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | 0.250
.250
.250
.250 | 0.493
.563
.379
.621 | 0.743
.813
.629
<u>.871</u>
Av764 | 2.7
6.4
17.7
14.0
Av.±10.2 | | 12F169
12F170
12F171
12F172 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | .500
.500
.500
.500 | .166
.069
.169
.108 | .666
.569
.669
.608
Av628 | 6.1
9.4
6.5
3.2
Av. ±6.3 | | 12F2O3
12F2O4
12F2O5
12F2O6 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | .569
.604
.750
.750 | 0
0
.018
.0 ⁴ 9 | .569
.604
.768
.799
Av685 | 16.9
11.8
12.1
16.6
Av.±14.4 | | 12F210
12F211
12F212
12F215 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | .250
.250
.250
.250 | .231
.154
.248
.212 | .481
.404
.498
.462
Av461 | 4.3
12.4
8.0
.2
Av. ±6.2 | | 12F216
12F217
12F219
12F220 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | .500
.500
.500
.500 | .128
.093
.094
.102 | .628
.593
.594
.602
Av604 | 4.0
1.8
1.7
.3
Av. ±2.0 | | 12F224
12F225
12F226
12F227 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | .648
.656
.684
.750 | 0
0
0
.112 | .648
.656
.684
.862
Av713 | 9.1
8.0
4.1
<u>20.9</u>
Av.±10.5 | TABLE VII.- RESULTS OF TWO-STEP TESTS AT 400° F BASED ON MEAN S-N CURVE - Concluded | | | т | | r | | | | |--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--|---|---|--| | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , | R ₂ ' n ₂ N ₂ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | | | 12F228
12F229
12F258
12F259 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | 0.250
.250
.250
.250 | 0.436
.585
.651
.528 | 0.686
.835
.901
<u>.778</u>
Av800 | 14.2
4.4
12.6
<u>2.7</u>
Av. ±8.5 | | | 12F261
12F262
12F264
12F272 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | .500
.500
.500
.500 | .672
.547
.296
.691 | 1.172
1.047
.796
<u>1.191</u>
Av. 1.052 | 11.4
.5
24.3
<u>13.2</u>
Av. ±12.4 | | | 12F266
12F267
12F268
12F269 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | .750
.654
.750
.659 | .133
0
.039
0 | .883
.654
.789
<u>.659</u>
Av746 | 18.4
12.3
5.8
<u>11.7</u>
Av. ±12.1 | | | 12F275
12F276
12F278
12F279 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .250
.250
.250
.250 | .271
.176
.198
.332 | .521
.426
.448
.582
Av494 | 5.5
13.8
9.3
<u>17.8</u>
Av. ±11.6 | | | 12F280
12F281
12F282
12F284 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .500
.500
.500
.500 | .13 ⁴
.158
.118
.185 | .634
.658
.618
.685
Av649 | 2.3
1.4
4.8
<u>5.5</u>
Av. ±3.5 | | | 12F285
12F286
12F288
12F289 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .750
.728
.676
.750 | .054
0
0
.110 | .804
.728
.676
.860
Av767 | 4.8
5.1
11.9
<u>12.1</u>
Av. ±8.5 | | # TABLE VIII.- RESULTS OF TWO-STEP TESTS AT 400° F BASED ON MINIMUM S-N CURVE [From minimum curve: N at 68,000 psi is 181,000 cycles, N at 70,000 psi is 154,000 cycles, N at 78,000 psi is 79,000 cycles, and N at 80,000 psi is 67,000 cycles] | | | | | ··········· | ' | | |--------------------------------------|--------------------------------------|--------------------------------------|---|--|--|--| | Specimen
number | S _l ,
psi | S ₂ ,
psi | R _l , ⁿ l N ₁ | R ₂ , n ₂ N ₂ | Cumulative cycle ratio, $\sum_{n=1}^{\infty} n$ | Deviation from average, percent | | 12F164
12F165
12F166
12F168 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | 0.492
.492
.492
.492 | 0.588
.672
.452
.742 | 1.080
1.164
.944
<u>1.234</u>
Av. 1.106 | 2.4
5.2
14.6
11.2
Av. ±8.4 | | 12F169
12F170
12F171
12F172 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | .983
.983
.983
.983 | .199
.082
.201
.128 | 1.182
1.065
1.184
1.111
Av. 1.136 | 4.0
6.2
4.2
2.2
Av. ±4.2 | |
12F203
12F204
12F205
12F206 | 68,000
68,000
68,000
68,000 | 80,000
80,000
80,000
80,000 | 1.119
1.189
1.475
1.475 | 0
0
.021
.058 | 1.119
1.189
1.496
<u>1.533</u>
Av. 1.334 | 16.1
10.9
12.1
<u>14.9</u>
Av. ±13.5 | | 12F210
12F211
12F212
12F215 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | .299
.299
.299
.299 | .455
.304
.487
.417 | .75 ⁴
.603
.786
<u>.716</u>
Av715 | 5.5
15.7
9.9
.1
Av. ±7.8 | | 12F216
12F217
12F219
12F220 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | •597
•597
•597
•597 | .251
.183
.186
.200 | .848
.780
.783
<u>.797</u>
Av802 | 5.7
2.7
2.4
.6
Av. ±2.9 | | 12F224
12F225
12F226
12F227 | 80,000
80,000
80,000
80,000 | 68,000
68,000
68,000
68,000 | .773
.784
.816
.896 | 0
0
0
.219 | .783
.784
.816
<u>1.115</u>
Av875 | 10.5
10.4
6.7
<u>27.4</u>
Av. ±13.8 | TABLE VIII.- RESULTS OF TWO-STEP TESTS AT 400° F BASED ON MINIMUM S-N CURVE - Concluded | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , | R ₂ ,
n ₂
N ₂ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | | |--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--|--|---|--| | 12F228
12F229
12F258
12F259 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | 0.455
.455
.455
.455 | 0.563
.756
.841
.682 | 1.018
1.211
1.296
1.137
Av. 1.166 | 12.7
3.9
11.1
<u>2.5</u>
Av. ±7.6 | | | 12F261
12F262
12F264
12F272 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | .909
.909
.909
.909 | .867
.706
.382
.892 | 1.776
1.615
1.291
1.801
Av. 1.621 | 9.6
.4
20.4
<u>11.1</u>
Av. ±10.4 | | | 12F266
12F267
12F268
12F269 | 70,000
70,000
70,000
70,000 | 78,000
78,000
78,000
78,000 | 1.364
1.190
1.364
1.197 | .172
0
.051
0 | 1.536
1.190
1.415
<u>1.197</u>
Av. 1.335 | 15.1
10.9
6.0
<u>10.3</u>
Av. ±10.6 | | | 12F275
12F276
12F278
12F279 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .323
.323
.323
.323 | .492
.319
.360
.603 | .815
.642
.683
.926
Av767 | 6.3
16.3
11.0
<u>20.7</u>
Av. ±13.6 | | | 12F280
12F281
12F282
12F284 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .646
.646
.646
.646 | .243
.288
.214
.336 | .889
.934
.860
<u>.982</u>
.916 | 2.9
2.0
6.1
<u>7.2</u>
Av. ±4.6 | | | 12F285
12F286
12F288
12F289 | 78,000
78,000
78,000
78,000 | 70,000
70,000
70,000
70,000 | .968
.941
.873
.968 | .097
0
0
.200 | 1.065
.941
.873
1.168
Av. 1.012 | 5.2
7.0
13.7
15.4
Av. ±10.3 | | TABLE IX.- RESULTS OF THREE-STEP TESTS AT 400° F BASED ON MEAN S-N CURVE [From mean curve: N at 68,000 psi is 356,000 cycles, N at 74,000 psi is 170,000 cycles, and N at 80,000 psi is 80,000 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | S ₃ ,
psi | R ₁ , n ₁ . N ₁ | R ₂ , n ₂ | R ₃ , n ₃ N ₃ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | |--------------------------------------|-------------------------|--------------------------------------|-------------------------|--|---------------------------------|--|--|--| | 12F290
12F291
12F292
12F293 | 68,000
68,000 | 74,000
74,000
74,000
74,000 | 80,000
80,000 | .300
.300 | 0.300
.300
.300 | 0.911
.649
.393
.771 | 1.249
•993 | 18.0
2.5
22.5
_7.0
Av.±12.5 | | 12F295
12F297
12F298
12F299 | 80,000
80,000 | 74,000
74,000
74,000
74,000 | 68,000
68,000 | .300
.300 | .266
.300
.300
.300 | 0
.024
.036
.064 | .636 | 9.1
.2
2.1
<u>6.6</u>
Av. ±4.5 | TABLE X.- RESULTS OF THREE-STEP TESTS AT 400° F BASED ON MINIMUM S-N CURVE [From minimum curve: N at 68,000 psi is 181,000 cycles, N at 74,000 psi is 111,000 cycles, and N at 80,000 psi is 67,000 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | S ₃ ,
psi | R ₁ , n ₁ N ₁ | R ₂ ,
n ₂
N ₂ | R ₃ ,
n ₃
N ₃ | Cumulative cycle ratio, $\frac{n}{N}$ | Deviation
from
average,
percent | |--------------------------------------|-------------------------|-------------------------|--------------------------------------|---|--|--|--|---| | 12F290
12F291
12F292
12F293 | 68,000
68,000 | 74,000 | 80,000
80,000
80,000
80,000 | | 0.459
.459
.459
.459 | 1.088
.775
.469
.921 | 2.137
1.824
1.518
<u>1.970</u>
Av. 1.862 | 14.8
2.0
18.5
<u>5.8</u>
Av.±10.3 | | 12F295
12F297
12F298
12F299 | 80,000
80,000 | | | .358
.358
.358
.358 | .407
.459
.459
.459 | 0
.046
.071
.126 | .765
.863
.888
.943
Av865 | 11.6
.2
2.7
<u>9.0</u>
Av. ±5.9 | TABLE XI.- RESULTS OF FIVE-STEP TESTS AT 400° F BASED ON MEAN S-N CURVE [From mean curve: N at 68,000 psi is 356,000 cycles, N at 70,000 psi is 280,000 cyles, N at 72,000 psi is 220,000 cycles, N at 74,000 psi is 170,000 cycles, and N at 76,000 psi is 135,000 cycles] | | Deviation
from
average,
percent | 11.7
.6
32.8
21.1
Av.±16.6 | 19.3
7.9
9.6
2.0
Av. ±9.7 | 17.4
26.3
7.4
16.0
Av.±16.8 | |--
--|--|--|--| | | Cumulative cycle ratio, $\sum_{\overline{N}} \frac{n}{N}$ | 1.559
1.558
2.044
1.214
Av. 1.539 | .572
.765
.777
.777
.709 | .762
.478
.601
.752
Av649 | | | R S S | 0.200 0.559
.200 .738
.200 1.244
.200 .414 | 0000 | 0000 | | | R ₁ , n | 0.200
.200
.200
.200 | 0
.165
.177
.123 | .162
0
.001 | | | R Z N | 0.200
.200
.200
.200 | . 200
. 200
. 200
. 200 | .078
.078
.200 | | ָרָבְי
בַּי | E H N | 0.200
.200
.200
.200 | 8888 | 2008 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | R L L | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0000 | 200
200
200
200
200 | | יייייייייייייייייייייייייייייייייייייי | 85,
psi | 76,000
76,000
76,000
76,000 | 68,000
68,000
68,000 | 68,000
68,000
68,000
68,000 | | ,
107
1 | S ₄ ,
psi | 74,000
74,000
74,000
74,000 | 70,000
70,000
70,000
70,000 | 76,000
76,000
76,000
76,000 | | לפל סססלסו מש | 83,
psi | 72,000
72,000
72,000
72,000 | 72,000
72,000
72,000
72,000 | 68,000
68,000
68,000 | | 4 | S ₂ ,
psi | 70,000
70,000
70,000
70,000 | 74,000
74,000
74,000
74,000 | 8888 | | | S _l ,
psi | 68,000 70,0
68,000 70,0
68,000 70,0
68,000 70,0 | 76,000 74,0
76,000 74,0
76,000 74,0
76,000 74,0 | 68,000 76,
68,000 76,
68,000 76,
68,000 76, | | | Specimen | 12F300
12F301
12F302
12F304 | 12F305
12F307
12F308
12F309 | 12F310
12F311
12F312
12F313 | TABLE XII.- RESULTS OF FIVE-STEP TESTS AT 400° F BASED ON MINIMUM S-N CURVE [From minimum curve: N at 68,000 psi is 181,000 cycles, N at 70,000 psi is 154,000 cycles, N at 72,000 psi is 131,000 cycles, N at 74,000 psi is 111,000 cycles, and N at 76,000 psi is 93,000 cycles] | Deviation
from
average,
percent | 10.5
0
29.4
18.9
Av.±14.7 | 21.8
8.9
10.9
2.1
Av.±10.9 | 15.5
26.2
3.7
14.5
Av.±15.0 | |---|---|--|--| | Cumulative cycle ratio, | 2.199
2.455
3.179
1.991
Av. 2.456 | .881
1.227
1.250
1.151
Av. 1.127 | 1.303
.832
1.086
1.291
Av. 1.128 | | R L L | 0.800
1.056
1.780
.592 | 0000 | 0000 | | R _{lt} , | 0.306
.306
.306 | 0
.299
.322
.223 | .231
0
.014
.219 | | R3, | 0.336
.336
.336
.336 | .289
.336
.336
.336 | .393 | | ^R 2,
ⁿ 2
^N 2 | - 40×
40× | .306
.306
.306 | .286
.286
.286 | | R IN | 0.393
.393
.393
.393 | 286
286
286
286 | .393
.393
.393 | | S ₅ ,
psi | 76,000
76,000
76,000
76,000 | 88,900
89,000
90,000 | 68,000
68,000
68,000
68,000 | | S _{µ,} | 74,000
74,000
74,000
74,000 | 70,000
70,000
70,000 | 76,000
76,000
76,000
76,000 | | S ₃ ,
psi | 72,000
72,000
72,000 | 72,000
72,000
72,000
72,000 | 68,000
68,000
68,000 | | S ₂ ,
psi | 70,000 | 74,000
74,000
74,000
74,000 | 76,000
76,000
76,000
76,000 | | S, L, S, E, | 68,000 70,0
68,000 70,0
68,000 70,0 | 76,000 74,0
76,000 74,0
76,000 74,0
76,000 74,0 | 68,000 76,0
68,000 76,0
68,000 76,0 | | Specimen
number | 12F300
12F301
12F302
12F304 | 12F305
12F307
12F308
12F309 | 12F310
12F311
12F312
12F313 | TABLE XIII. - COMPARISON OF 400° F TEST RESULTS WITH RESULTS COMPUTED BY HENRY'S THEORY (REF. 34) | Cumulative
cycle ratio | Henry's
theory | | 1.216
1.025
(b) | .807 | .940 | 1.061 |
- | 986. | | 1.184 | | 1.105
.937
.986 | |---------------------------|-------------------------|----------------|----------------------------|------------|------------------|--------|---|--------|------------|------------------|-----------|----------------------------| | Cumula | Test
average
(a) | | 1.136 | | 1.166 | 1.621 | 767 | 1.012 | | 1.862 | | 2.456
1.127
1.128 | | | η N | | | | | | | | | | | 0.306
.364
.286 | | | d N | | | | | | | | | | | 0.336
.336
.393 | | | N N | esta | | | | | | | tests | 0.459
974. | tests | 0.364
.306
.286 | | | d N | Two-step tests | 0.492 .983 | .597 | .896
.455 | | 5.73 | .968 | Three-step | 0.590 | Five-step | 0.393
.286
.393 | | | S ₅ ,
psi | TWO | | | | | | | Thre | | Fiv | 76,000
68,000
68,000 | | | S ₄ , | | | | | | | | | | | 74,000
70,000
76,000 | | | S ₃ , | | | | | | | | | 80,000
68,000 | | 72,000
72,000
68,000 | | | S2,
psi | | 88
98,98
99,08 | 88 | 68,000
78,000 | 78,000 | 70,000 | 70,000 | | 74,000 | | 70,000
74,000
76,000 | | | Sl,
psi | | 68,000
68,000
68,000 | 88
86,8 | 80,000
70,000 | 70,000 | , 65
, 60
, 60
, 60
, 60
, 60
, 60
, 60
, 60 | 78,000 | | 68,000
80,000 | | 68,000
76,000
68,000 | $^{9}\mathrm{From}$ results based on minimum S-N curve. $^{\mathrm{b}}\mathrm{Theoretical}$ analysis not applicable since cycle ratio at initial stress exceeds unity. TABLE XIV.- RESULTS OF 800° F TESTS AT ONE STRESS LEVEL [N obtained from mean S-N curve] | Specimen
number | Stress,
psi | Cycles to failure, | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation from average, percent | |--|--|--|---|--|---| | 12F342
12F363
12F344
12F345 | 82,000
82,000
82,000
82,000 | 41,100
49,400
53,100
58,200 | 40,000
40,000
40,000
40,000 | 1.028
1.235
1.328
1.455
Av. 1.262 | 18.5
2.9
5.2
<u>15.3</u>
Av. ±10.5 | | 12F347
12F346
12F365
12F364
12F325
12F330
12F327 | 80,000
80,000
80,000
80,000
80,000
80,000
80,000 | 40,900
43,200
45,200
47,200
62,800
79,800
110,200 | 65,000
65,000
65,000
65,000
65,000
65,000 | .629
.665
.695
.726
.966
1.228
1.700
Av944 | 33.4
29.6
26.4
23.1
2.3
30.0
80.0
Av. ±32.1 | | 12F348
12F431
12F435
12F323
12F432
12F334
12F434
12F335 | 78,000
78,000
78,000
78,000
78,000
78,000
78,000 | 65,800
75,000
102,100
103,600
111,200
127,700
131,800
192,200 | 110,000
110,000
110,000
110,000
110,000
110,000
110,000 | .598
.682
.928
.942
1.011
1.161
1.198
<u>1.747</u>
Av. 1.033 | 42.1
34.0
10.2
8.8
2.1
12.3
16.0
69.1
Av. ±24.3 | | 12F350
12F372
12F371
12F322
12F352 | 76,000
76,000
76,000
76,000
76,000 | 93,800
132,600
222,800
226,900
274,600 | 184,000
184,000
184,000
184,000
184,000 | .510
.721
1.211
1.233
1.492
Av. 1.033 | 50.6
30.0
17.2
19.4
44.4
Av. ±32.3 | | 12F353
12F354
12F355
12F321 | 74,000
74,000
74,000
74,000 | 360,800
377,800
417,300
418,100 | 308,000
308,000
308,000
308,000 | 1.171
1.227
1.355
1.357
Av. 1.278 | 8.4
4.0
6.0
<u>6.2</u>
Av. ±6.2 | 40 NACA IN 4284 TABLE XIV.- RESULTS OF 800° F TESTS AT ONE STRESS LEVEL - Continued | Specimen
number | Stress,
psi | Cycles to
failure,
n | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation from average, percent | |--|--|--|---|---|---| | 12F367
12F433
12F320
12F368
12F436
12F366 | 72,000
72,000
72,000
72,000
72,000
72,000
72,000 | 181,100
235,000
493,000
571,400
732,800
867,100
1,118,500 | 518,000
518,000
518,000
518,000
518,000
518,000 | 0.350
.454
.952
1.103
1.415
1.674
<u>2.159</u>
Av. 1.211 | 71.1
62.5
21.4
8.9
16.8
38.2
78.3
Av. ±42.4 | | 12F356
12F438
12F340
12F437
12F440
12F341
12F319
12F339 | 70,000
70,000
70,000
70,000
70,000
70,000
70,000 | 759,300
803,500
1,043,000
1,141,700
1,193,800
1,223,000
1,328,300
1,617,500 | 860,000
860,000
860,000
860,000
860,000
860,000
860,000 | .883
.934
1.212
1.327
1.388
1.422
1.544
1.880
Av. 1.323 | 33.3
29.4
8.4
.3
4.9
7.5
16.7
42.1
Av. ±17.8 | | 12F381
12F384
12F383
12F382
12F358
12F357
12F318
12F337 | 68,000
68,000
68,000
68,000
68,000
68,000
68,000 | 518,100
654,300
742,100
820,300
1,113,300
1,671,000
2,293,300
2,545,800 | 1,500,000
1,500,000
1,500,000
1,500,000
1,500,000
1,500,000
1,500,000 | .345
.436
.495
.547
.742
1.114
1.529
1.697
Av863 | 60.1
49.5
42.6
36.6
14.1
29.0
77.1
96.6
Av. ±50.7 | | 12F317
12F332
12F326
12F328 | 66,000
66,000
66,000
66,000 | 3,374,800
3,994,000
4,303,700
5,178,500 | 3,120,000
3,120,000
3,120,000
3,120,000 | 1.082
1.280
1.379
<u>1.660</u>
Av. 1.350 | 19.9
5.2
2.1
30.0
Av. ±14.3 | TABLE XIV.- RESULTS OF 800° F TESTS AT ONE STRESS LEVEL - Concluded | Specimen
number | Stress,
psi | Cycles to
failure,
n | Mean
life,
N | Cycle
ratio,
<u>n</u>
N | Deviation
from
average,
percent | |--|--|--|---|---|---| | 12F362
12F360
12F359
12F370
12F361 | 65,000
65,000
65,000
65,000
65,000 | 2,807,600
4,287,700
4,748,700
8,677,600
13,223,500 | 5,150,000
5,150,000
5,150,000
5,150,000
5,150,000 | 0.545
.833
.922
1.685
<u>2.567</u>
Av. 1.310 | 58.4
36.4
29.6
28.6
96.0
Av. ±49.8 | TABLE XV.- RESULTS OF TWO-STEP TESTS AT 800° F [From mean curve: N at 74,000 psi is 308,000 cycles and N at 78,000 psi is 110,000 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | R _l , n _l N _l | R ₂ ,
n <u>2</u>
N ₂ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | |--|--|--
---|--|---|--| | 12F478
12F446
12F442
12F473
12F444 | 7 ¹ 4,000
7 ¹ 4,000
7 ¹ 4,000
7 ¹ 4,000 | 78,000
78,000
78,000
78,000
78,000 | 0.250
.250
.250
.250
.250 | 0.709
.837
.865
1.211
1.225 | 0.959
1.087
1.115
1.461
<u>1.475</u>
Av. 1.219 | 21.3
10.8
8.5
19.9
21.0
Av. ±16.3 | | 12F451
12F482
12F477
12F447
12F483 | 74,000
74,000
74,000
74,000
74,000 | 78,000
78,000
78,000
78,000
78,000 | .500
.500
.500
.500 | .426
.468
.567
.930
.981 | .926
.968
1.067
1.430
1.481
Av. 1.174 | 21.1
17.5
9.1
21.8
26.1
Av. ±19.1 | | 12F454
12F481
12F452
12F456 | 74,000
74,000
74,000
74,000 | 78,000
78,000
78,000
78,000 | .581
.750
.750
.750 | 0
.250
.327
.699 | .581
1.000
1.077
1.449
Av. 1.027 | 43.4
2.6
4.9
41.1
Av. ±23.0 | | 12F460
12F459
12F457
12F461 | 78,000
78,000
78,000
78,000 | 74,000
74,000
74,000
74,000 | .250
.250
.250
.250 | .141
.224
.273
.390 | .391
.474
.523
.640
Av507 | 22.9
6.5
3.2
26.2
Av. ±14.7 | | 12F467
12F463
12F466
12F465 | 78,000
78,000
78,000
78,000 | 74,000
74,000
74,000
74,000 | .500
.500
.500
.500 | .006
.069
.100
.305 | .506
.569
.600
<u>.805</u>
Av620 | 18.4
8.2
3.2
<u>29.8</u>
Av. ±14.9 | | 12F470
12F472
12F469
12F485
12F468 | 78,000
78,000
78,000
78,000
78,000 | 74,000
74,000
74,000
74,000
74,000 | .623
.626
.719
.750 | 0
0
0
.027
.049 | .623
.626
.719
.777
<u>.799</u>
Av709 | 12.1
11.7
1.4
9.6
12.7
Av. ±11.9 | TABLE XV.- RESULTS OF TWO-STEP TESTS AT 800° F - Concluded | Specimen
number | S _l ,
psi | S ₂ ,
psi | R ₁ , n 1 N 1 | R ₂ ,
n ₂
N ₂ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviative from average, percent | |--|--|--|--------------------------------------|--|---|---| | 12F491
12F487
12F488
12F492 | 80,000
80,000
80,000
80,000 | 72,000
72,000
72,000
72,000 | 0.250
.250
.250
.250 | 0.085
.309
.343
.566 | 0.335
.559
.593
.816
Av576 | 41.8
2.9
3.0
<u>41.7</u>
Av. ±22.4 | | 12F496
12F494
12F497
12F495 | 80,000
80,000
80,000
80,000 | 72,000
72,000
72,000
72,000 | .454
.500
.500 | 0
.001
.029
.053 | .454
.501
.529
<u>.553</u>
Av509 | 10.8
1.6
3.9
<u>8.6</u>
Av. ±6.2 | | 12F502
12F498
12F503
12F500
12F499 | 80,000
80,000
80,000
80,000 | 72,000
72,000
72,000
72,000
72,000 | .514
.586
.628
.692
.750 | • O _{ff f} t
0
0
0
0 | .514
.586
.628
.692
.794
Av643 | 20.1
8.9
2.3
7.6
<u>23.5</u>
Av. ±12.5 | | 12F507
12F506
12F508
12F504 | 72,000
72,000
72,000
72,000 | 80,000
80,000
80,000
80,000 | .250
.250
.250
.250 | •597
•905
•958
1.015 | .847
1.155
1.208
1.265
Av. 1.119 | 24.3
3.2
8.0
<u>13.0</u>
Av. ±12.1 | | 12F510
12F509
12F511
12F512
12F513 | 72,000
72,000
72,000
72,000
72,000 | 80,000
80,000
80,000
80,000 | .500
.500
.500
.500 | .614
.646
1.209
1.306
1.371 | 1.114
1.146
1.709
1.806
<u>1.871</u>
Av. 1.529 | 27.1
25.0
11.8
18.1
22.4
Av. ±20.9 | | 12F514
12F517
12F515
12F516 | 72,000
72,000
72,000
72,000 | 80,000
80,000
80,000
80,000 | .750
.750
.750
.750 | .662
.942
1.049
1.326 | 1.412
1.692
1.799
<u>2.076</u>
Av. 1.745 | 19.1
3.0
3.1
<u>19.0</u>
Av. ±11.1 | TABLE XVI.- RESULTS OF THREE-STEP TESTS AT 800° F [From mean curve: N at 72,000 psi is 518,000 cycles, N at 76,000 psi is 184,000 cycles, and N at 80,000 psi is 65,000 cycles] | Specimen
number | S _l ,
psi | S ₂ ,
psi | S ₃ ,
psi | R ₁ , n ₁ N ₁ | R ₂ ,
n ₂
N ₂ | R ₃ , n ₃ N ₃ | Cumulative cycle ratio, $\sum \frac{n}{N}$ | Deviation
from
average,
percent | |--|--------------------------------------|--|----------------------------|---|--|--|---|---| | 12F522
12F528
12F530
12F526
12F525 | 72,000
72,000
72,000 | 76,000
76,000
76,000
76,000
76,000 | 80,000
80,000
80,000 | | .257
.271 | 0
0
.011
.074 | 0.509
.557
.571
.611
.674
.584 | 12.8
4.6
2.2
4.6
15.4
Av. ±7.9 | | 12F532
12F533
12F531
12F537
12F535
12F534 | 80,000
80,000
80,000
80,000 | 76,000
76,000
76,000 | 72,000
72,000 | .300
.300
.300
.300
.300 | .078
.091
.110
.179
.208
.234 | 00000 | .378
.391
.410
.479
.508
.534
Av450 | 16.0
13.1
8.9
6.4
12.9
<u>18.7</u>
Av.±12.7 | TABLE XVII.- RESULTS OF FIVE-STEP TESTS AT 800° F [From mean curve: N at 72,000 psi is 518,000 cycles, N at 74,000 psi is 308,000 cycles N at 76,000 psi is 184,000 cycles, N at 78,000 cycles is 110,000 cycles, and N at 80,000 psi is 65,000 cycles] | | Deviation
from
average, | 55.9
12.7
2.8
143.1
Av.±23.3 | 10.0
5.0
3.5
18.1
Av. ±9.2 | 29.0
3.4
14.2
11.3
Av.±14.5 | |---|--|---|--|--| | | Cumulative cycle ratio, $\sum_{N}^{n} \frac{n}{N}$ | 0.584
.772
.909
1.271
v884 | .413
.445
.542 | . 269
. 392
. 433
. 422
379 | | i | | 0
0
109
471
Av | - 4 | Av | | | H T N | 0044 | 0000 | | | | R _t , n _t | 0
.172
.200
.200 | 0000 | 0000 | | | R 3, | 0.184
.200
.200 | .013
.036
.045
.152 | 0
0
.033
.022 | | | R 2 N N N N N N N N N N N N N N N N N N | 0.800
800
800
800
800
800
800
800
800
80 | 00000 | .192 | | | ж
гл
гл | 0.200
.200
.200
.200 | 0000 | 000.000.0000.0000.0000.0000.0000.0000.0000 | | | S ₅ ,
psi | 80,000
80,000
90,000 | 72,000
72,000
72,000
72,000 | 72,000
72,000
72,000
72,000 | | 1 | S ₄ ,
psi | 78,000
78,000
78,000
78,000 | 74,000
74,000
74,000
74,000 | 88,000
80,000
80,000
80,000 | | | 8 ₃ , | 76,000
76,000
76,000
76,000 | 76,000
76,000
76,000 | 72,000
72,000
72,000
72,000 | | | 82,
psi | 74,000
74,000
74,000
74,000 | 78,000
78,000
78,000
78,000 | 88.00,000
000,000,000
000,000 | | | S ₁ ,
psi | 72,000
72,000
72,000
72,000 | 88,000
,000,000
,000,000 | 72,000 80,0
72,000 80,0
72,000 80,0 | | | Specimen | 12F539
12F543
12F538
12F5340 | 12F548
12F546
12F549
12F547 | 121556
121552
121550
121554 | | | | | | | MABLE XVIII. - COMPARISON OF 800° F TEST RESULTS WITH RESULTS COMPUTED BY HENRY'S THEORY (REF. 34) Henry's theory 1.129 .867 .853 .904 1.052 1.072 1.058 .939 cycle ratio Cumulative average 11.119 1.529 1.776 1.219 1.111 1.027 620 ... Test 결합 3 P Three-step tests tests al so Two-step TIET S₅, psi psi S.↓, psi 3₃, 80,000 80,000 72,000 72,000 78,000 74,000 74,000 74,000 S₂, psi 72,000 80,000 80,000 74,000 74,000 78,000 78,000 72,000 s_1 , psi 1.133 1.090 .866 .979 0.884 .459 .379 o.5 姿元 200 0.200 0.200 800 0.200 .200 .800 0.300 .300 Five-step tests 0.300 300 0.20 00%. 80,000 72,000 72,000 78,000 74,000 80,000 76,000 76,000 72,000 80,000 72,000 76,000 76,000 74,000 78,000 80,000 72,000 80,000 72,000 72,000 Figure 1.- Typical curves of damage ratio plotted against cycle ratio. Figure 2.- Average tensile stress-strain curve for SAE 4130 stainless steel at room temperature. Figure 5.- Dimensions of $\frac{1}{2}$ -inch-diameter rotating-beam fatigue specimen. Figure 4.- S-N curve at room temperature. Figure 5.- S-N curve at $400^{\rm o}$ F. Stress, psi Figure 6.- S-N curve at 800° F. NACA - Langley Field, Va. | • | | | | | | |---|---|---|--|---|---| _ | _ | | | | | | | - | • | • | _ | • | | | | | | | • | • | | _ | | | | | | | • | | | | | | | |
 | _ | | | | | | | - | - |